Radial Tree with Bars

{
  "$schema": "https://vega.github.io/schema/vega/v5.json",
  "usermeta": {
    "deneb": {
      "build": "1.4.0.0",
      "metaVersion": 1,
      "provider": "vega",
      "providerVersion": "5.22.1"
    },
    "interactivity": {
      "tooltip": true,
      "contextMenu": true,
      "selection": false,
      "highlight": false,
      "dataPointLimit": 50
    },
    "information": {
      "name": "Radial Tree with Bars",
      "description": "[No Description Provided]",
      "author": "Kerry Kolosko",
      "uuid": "cd054daf-7d5f-4602-bbd3-f9f2157af70e",
      "generated": "2022-11-23T13:49:06.828Z",
      "previewImageBase64PNG": ""
    },
    "dataset": [
      {
        "key": "__0__",
        "name": "label",
        "description": "",
        "type": "text",
        "kind": "column"
      },
      {
        "key": "__1__",
        "name": "id",
        "description": "",
        "type": "numeric",
        "kind": "column"
      },
      {
        "key": "__2__",
        "name": "children",
        "description": "",
        "type": "numeric",
        "kind": "measure"
      },
      {
        "key": "__3__",
        "name": "Size",
        "description": "",
        "type": "numeric",
        "kind": "measure"
      },
      {
        "key": "__4__",
        "name": "parentid",
        "description": "",
        "type": "numeric",
        "kind": "measure"
      },
      {
        "key": "__5__",
        "name": "Width",
        "description": "",
        "type": "numeric",
        "kind": "measure"
      },
      {
        "key": "__6__",
        "name": "Sum",
        "description": "",
        "type": "numeric",
        "kind": "measure"
      }
    ]
  },
  "config": {
    "autosize": {
      "type": "fit",
      "contains": "padding"
    }
  },
  "data": [
    {
      "name": "dataset",
      "transform": [
        {
          "type": "stratify",
          "key": "__1__",
          "parentKey": "__4__"
        },
        {
          "type": "tree",
          "method": {
            "signal": "layout"
          },
          "size": [
            1,
            {"signal": "radius"}
          ],
          "as": [
            "alpha",
            "radius",
            "depth",
            "__2__"
          ]
        },
        {
          "type": "formula",
          "expr": "(rotate + extent * datum.alpha + 270) % 360",
          "as": "angle"
        },
        {
          "type": "formula",
          "expr": "PI * datum.angle / 180",
          "as": "radians"
        },
        {
          "type": "formula",
          "expr": "inrange(datum.angle, [90, 270])",
          "as": "leftside"
        },
        {
          "type": "formula",
          "expr": "originX + datum.radius * cos(datum.radians)",
          "as": "x"
        },
        {
          "type": "formula",
          "expr": "originY + datum.radius * sin(datum.radians)",
          "as": "y"
        },
        {
          "type": "formula",
          "expr": "datum.x + 100",
          "as": "barsxoffset"
        },
        {
          "type": "formula",
          "expr": "datum.y + 100",
          "as": "barsyoffset"
        }
      ]
    },
    {
      "name": "links",
      "source": "dataset",
      "transform": [
        {"type": "treelinks"},
        {
          "type": "linkpath",
          "shape": {"signal": "links"},
          "orient": "radial",
          "sourceX": "source.radians",
          "sourceY": "source.radius",
          "targetX": "target.radians",
          "targetY": "target.radius"
        }
      ]
    },
    {
      "name": "circles",
      "source": "dataset",
      "transform": [
        {
          "type": "filter",
          "expr": "datum['__2__'] > 0"
        }
      ]
    },
    {
      "name": "bars",
      "source": "dataset",
      "transform": [
        {
          "type": "filter",
          "expr": "datum['__2__'] == 0"
        }
      ]
    }
  ],
  "signals": [
    {"name": "labels", "value": true},
    {"name": "radius", "value": 280},
    {"name": "extent", "value": 360},
    {"name": "rotate", "value": 0},
    {
      "name": "layout",
      "value": "cluster"
    },
    {
      "name": "links",
      "value": "diagonal"
    },
    {
      "name": "originX",
      "update": "width / 2"
    },
    {
      "name": "originY",
      "update": "height / 2"
    }
  ],
  "scales": [
    {
      "name": "color",
      "type": "linear",
      "range": {"scheme": "set1"},
      "domain": {
        "data": "dataset",
        "field": "__4__"
      },
      "zero": true
    }
  ],
  "marks": [
    {
      "type": "path",
      "from": {"data": "links"},
      "encode": {
        "update": {
          "x": {"signal": "originX"},
          "y": {"signal": "originY"},
          "path": {"field": "path"},
          "stroke": {"value": "#ccc"}
        }
      }
    },
    {
      "encode": {
        "update": {
          "x": {"field": "x"},
          "fill": {
            "field": "__4__",
            "scale": "color"
          },
          "y": {"field": "y"}
        },
        "enter": {
          "stroke": {"value": "#fff"},
          "size": {
            "field": "__3__",
            "mult": 400
          },
          "opacity": {"value": 0.5}
        }
      },
      "from": {"data": "circles"},
      "type": "symbol"
    },
    {
      "type": "arc",
      "from": {"data": "bars"},
      "encode": {
        "enter": {
          "fill": {"value": "#ffff33"},
          "stroke": {
            "value": "#bebada"
          },
          "opacity": {"value": 0.5}
        },
        "update": {
          "x": {"field": "x"},
          "y": {"field": "y"},
          "startAngle": {
            "signal": "datum.radians + 1.58"
          },
          "endAngle": {
            "signal": "datum.radians + 1.58"
          },
          "innerRadius": {"value": 0},
          "outerRadius": {
            "field": "__5__"
          },
          "cornerRadius": {"value": 6},
          "strokeWidth": {"value": 10},
          "opacity": {"value": 1},
          "hover": {
            "opacity": {"value": 0.5}
          }
        }
      }
    },
    {
      "type": "text",
      "from": {"data": "dataset"},
      "encode": {
        "enter": {
          "text": {
            "signal": "datum['__0__']+' '+format(datum['__6__'], '.1s')"
          },
          "fontSize": {"value": 9},
          "baseline": {
            "value": "middle"
          },
          "limit": {"value": 80}
        },
        "update": {
          "x": {"field": "x"},
          "y": {"field": "y"},
          "dx": {
            "signal": "(datum.leftside ? -5 - datum['__5__']  : 5 + datum['__5__'])  "
          },
          "angle": {
            "signal": "datum.leftside ? datum.angle - 180 : datum.angle"
          },
          "align": {
            "signal": "datum.leftside ? 'right' : 'left'"
          },
          "opacity": {
            "signal": "labels ? 1 : 0"
          }
        }
      }
    }
  ]
}

2 comments

  1. KK, how about wizards by wand… core, wood, length (rounded), rigidity?
    Now if you can come up with Albus’ chosen wand composition, huge sapiophile points

Leave a comment

Your email address will not be published. Required fields are marked *