{
"$schema": "https://vega.github.io/schema/vega-lite/v5.json",
"usermeta": {
"deneb": {
"build": "1.5.1.0",
"metaVersion": 1,
"provider": "vegaLite",
"providerVersion": "5.6.1"
},
"interactivity": {
"tooltip": true,
"contextMenu": true,
"selection": false,
"highlight": false,
"dataPointLimit": 50
},
"information": {
"name": "Strip Plot with Density",
"description": "[No Description Provided]",
"author": "Kerry Kolosko",
"uuid": "b9e7e229-25b3-4267-adef-f92002f0bda3",
"generated": "2023-07-21T16:26:24.157Z",
"previewImageBase64PNG": ""
},
"dataset": [
{
"key": "__0__",
"name": "Y",
"description": "",
"type": "numeric",
"kind": "column"
},
{
"key": "__1__",
"name": "X",
"description": "",
"type": "numeric",
"kind": "column"
},
{
"key": "__2__",
"name": "Colour",
"description": "",
"type": "text",
"kind": "column"
},
{
"key": "__3__",
"name": "I",
"description": "",
"type": "text",
"kind": "column"
}
]
},
"config": {
"view": {"stroke": "transparent"},
"font": "Segoe UI",
"arc": {},
"area": {
"line": true,
"opacity": 0.6
},
"bar": {},
"line": {
"strokeWidth": 3,
"strokeCap": "round",
"strokeJoin": "round"
},
"path": {},
"point": {
"filled": true,
"size": 20
},
"rect": {},
"shape": {},
"symbol": {
"strokeWidth": 1.5,
"size": 20
},
"text": {
"font": "Segoe UI",
"fontSize": 12,
"fill": "#605E5C"
},
"axis": {
"ticks": false,
"grid": false,
"domain": false,
"labelColor": "#605E5C",
"labelFontSize": 12,
"titleFont": "wf_standard-font, helvetica, arial, sans-serif",
"titleColor": "#252423",
"titleFontSize": 16,
"titleFontWeight": "normal"
},
"axisQuantitative": {
"tickCount": 3,
"grid": true,
"gridColor": "#C8C6C4",
"gridDash": [1, 5],
"labelFlush": false
},
"axisX": {"labelPadding": 5},
"axisY": {"labelPadding": 10},
"header": {
"titleFont": "wf_standard-font, helvetica, arial, sans-serif",
"titleFontSize": 16,
"titleColor": "#252423",
"labelFont": "Segoe UI",
"labelFontSize": 13.333333333333332,
"labelColor": "#605E5C"
},
"legend": {
"titleFont": "Segoe UI",
"titleFontWeight": "bold",
"titleColor": "#605E5C",
"labelFont": "Segoe UI",
"labelFontSize": 13.333333333333332,
"labelColor": "#605E5C",
"symbolType": "circle",
"symbolSize": 75
}
},
"data": {"name": "dataset"},
"vconcat": [
{
"layer": [
{
"width": 300,
"mark": "point",
"description": "dot plot",
"encoding": {
"x": {
"field": "__1__",
"type": "quantitative",
"axis": {"title": ""}
},
"y": {
"field": "__0__",
"type": "quantitative",
"axis": {"title": ""}
},
"color": {
"field": "__2__",
"type": "nominal",
"legend": null,
"scale": null
}
}
},
{
"width": 300,
"transform": [
{
"density": "__1__",
"bandwidth": 3
}
],
"mark": {
"type": "line",
"color": "white",
"strokeWidth": 4,
"opacity": 1
},
"encoding": {
"x": {
"field": "value",
"axis": true,
"type": "quantitative"
},
"y": {
"field": "density",
"type": "quantitative",
"axis": {"labels": false}
}
}
},
{
"width": 300,
"transform": [
{
"density": "__1__",
"bandwidth": 3
}
],
"mark": {
"type": "line",
"color": "red",
"strokeWidth": 2,
"opacity": 1
},
"encoding": {
"x": {
"field": "value",
"axis": true,
"type": "quantitative"
},
"y": {
"field": "density",
"type": "quantitative",
"axis": {"labels": false}
}
}
}
],
"resolve": {
"scale": {
"y": "independent",
"color": "independent"
}
}
},
{
"width": 300,
"mark": "tick",
"description": "x-axis dash plot",
"encoding": {
"x": {
"field": "__1__",
"type": "quantitative",
"axis": {
"labels": false,
"domain": false,
"ticks": false
}
},
"color": {
"field": "__1__",
"type": "nominal",
"scale": {
"scheme": "sinebow"
},
"legend": null
}
}
}
],
"resolve": {
"scale": {
"y": "independent",
"color": "independent"
}
}
}